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Abstract 

Until now, cutting-edge Deep Learning (DL) techniques have been widely used in speech 

recognition and image processing. In a similar vein, there has been some work done by DL on 

cybersecurity. In this survey, we focus on intrusion detection, malware detection, phishing/spam 

detection, and website defacement detection, all of which have recently been proposed as DL 

methods in cybersecurity. The most common DL models and algorithms are first briefly defined. 

The four main modules of a general DL framework for cybersecurity applications are then 

presented and discussed. The focus area, methodology, model applicability, and feature 

granularity are all examined in conjunction with related papers, which are then summarized and 

analysed. The possible research topics that could be taken into consideration to improve various 

cybersecurity applications using DL models are discussed in the concluding remarks and future 

work. A literature review of deep learning (DL) applications for cyber security is the subject of 

this survey paper. Deep auto encoders, restricted Boltzmann machines, recurrent neural 

networks, generative adversarial networks, and a number of other DL techniques are all briefly 

described in this tutorial. Then, we talk about how security applications use each of the DL 

methods. Malware, spam, insider threats, network intrusions, false data injection, and malicious 

domain names used by botnets are just some of the attack types we cover. 

Keywords: Deep learning, Neural Networks, Digital Analytics, Profound Learning, 

Profound Brain Organizations, Auto Encoders In Depth, Profound Conviction 

Organizations, Limitations On Boltzmann Machines, Cyber Security Applications 

Introduction 

Since the Internet is now a part of everyone's life, it's vulnerable to a variety of threats because of 

its widespread interconnectedness. Cyberspace is home to a variety of security risks, including 

jailbreaking, two-faced malware, network intrusions, and more. A security arms race has 

developed as a result of these threats. In order to safeguard computers, networks, and software 

applications from malware infections and network intrusions, numerous security firms around 
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the world are concentrating on the development of novel technologies. The underlying network 

and computers are safeguarded from unauthorized access, destruction, malfunction, and 

modification by two conventional security systems known as host security systems and network 

security systems, respectively. Firewalls, Intrusion Detection Systems (IDSs), and antiviruses are 

examples of integrated security modules that aid in monitoring a system or network and issue an 

alert in the event of malicious activity. In order to deal with network attacks and identify 

malicious activities in computer network traffic, it is believed that intrusion detection is a 

necessary security mechanism. It aids in the discovery, determination, and identification of 

unauthorized use, duplication, alteration, and destruction of information and information systems 

[1]. It plays a crucial role in information security technology. 

In general, IDSs can be broken down into three categories: hybrid, anomaly detection, and 

misuse detection Pre-defined malicious activity signatures are used by misuse detection 

techniques to identify intrusions. As a result, they are only used to detect known attacks. 

Anomaly detection methods, on the other hand, identify malicious activities based on deviations 

from normal patterns and define normal patterns. Thus, zero-day attacks can be detected by 

anomaly-based detection techniques. Hybrid techniques make use of both methods for detecting 

misuse and anomalies. Hybrid approaches aim to increase detection rates of known intrusions 

while reducing false positives from unknown attacks[2]. 

The detection of malware is of the utmost importance due to the serious security issues and 

threats it has recently posed to Internet users. Fraudsters have taken advantage of these intrusive 

software programs, such as worms, viruses, Trojans, botnets, ransomware, and so on, to carry out 

a variety of security attacks on computer systems. These attacks put the confidentiality and 

integrity of the data that is communicated in question, as well as the availability of the services 

that are provided by the underlying infrastructure, in jeopardy. 

To protect computers and legitimate users from malware attacks, numerous vendors, such as 

Kaspersky, Symantec, Microsoft, McAfee, and Invincea, have developed anti-virus products. 

Malware is typically detected by these vendors using signature-based techniques. Although 

signature-based methods are effective in some ways, they are unable to identify zero-day 

malware, which may be disguised by malware authors. The phenomenal volume of everyday 

malware creation requires concocting precise robotized frameworks to identify and characterize 

malware. 
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Due to their numerous advantages over other traditional Machine Learning (ML) methods, DL 

algorithms have established a crucial role in solving complex problems with the rapid expansion 

of applications in areas such as image recognition, natural language processing, bioinformatics, 

speech recognition, and bioinformatics. DL is characterized as a few multifaceted ML 

calculations that are strong at learning significant level deliberations of mind boggling enormous 

scope information. Typically, DL algorithms use a lot of non-linear hidden layers to learn feature 

representations, making feature engineering automatic. As a result, when new forms of malware 

or network attacks emerge, there is no need to spend more time or money hiring engineers to re-

engineer the features. Different cybersecurity businesses can update their IDSs and malware 

detection systems with DL at no cost. 

Several DL models that have been applied to the areas of intrusion detection, malware detection, 

phishing/spam detection, and website defacement detection in the literature are the subject of this 

survey, which examines the application of DL to cybersecurity. Supposedly, this is the primary 

overview that presents a nitty gritty writing survey of network safety underlining notable DL 

calculation portrayals. Although some research on ML and Data Mining (DM) techniques for 

malware or intrusion detection has been done[2, 3, 4, 5], only a few of these studies provide an 

overview of DL methods for intrusion detection[5,6], and there is no survey on DL techniques for 

malware or phishing detection. 

Shallow Learning Vs. Deep Learning 

Artificial neural networks (ANNs) are AI calculations propelled by the focal sensory system. 

When McCulloch and Pitts [1] presented a mathematical model based on a biological neuron in a 

1943 study, they were first thought of. Hebb[2] and Rosenblatt[3] later put this into practice when 

they developed supervised learning through the creation of perceptron and unsupervised learning 

through self-organized learning, respectively. They have a few layers of neurons connected by 

adaptive weights (Figure 1), and the connections between the layers of the network that are next 

to them are typically complete. According to the universal approximation theorem for ANNs, a 

multi-layer perceptron (a type of ANN) with only one hidden layer can approximate any 

continuous function that maps real number intervals to some real number output interval. 

Because of this, most of the early research on ANNs focused on networks trained through back-

propagation with just one hidden layer because an ANN with one hidden layer can produce any 

non-linear continuous function[4]. The term "shallow learning" refers to networks with only one 
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hidden layer. There are shallow network architectures with and without supervised supervision. 

To learn a task, supervised learning uses labels (ground truth); Performing a machine learning 

task without labels is known as unsupervised learning. Feature extraction is performed separately 

rather than as part of the network in shallow learning. 

 

Figure 1. Shallow Neural Network. 

The first computer implementation of DL occurred in 2006[9], making it a much more recent 

endeavour. There are numerous meanings of DL and profound brain organizations (DNNs). 

According to a straightforward definition, DL is a collection of machine learning algorithms that 

attempt to learn at multiple levels, which correspond to various levels of abstraction (Figure 2). 

The levels compare to unmistakable degrees of ideas, where more elevated level ideas are 

characterized from lower-level ones, and a similar lower-level ideas can assist with 

characterizing numerous more significant level ideas[5]. The first few layers of the deep network 

are responsible for performing feature extraction. DL architectures can be unsupervised, 

supervised, or hybrid. Because they only have one hidden layer, shallow neural networks can't 

learn the higher-level concepts that deep neural networks can because they can't do advanced 

feature extraction. This is also true for other algorithms used in machine learning. However, in 

order to train DL models in a reasonable amount of time, DL methods necessitate greater 

computational power—sometimes multiple graphical processing units (GPUs). A common 

person can now easily create DL models thanks to two developments. The first is the increased 

availability of graphics processing units (GPUs), which make computation significantly faster. 

The second is that a DL model's layers can be trained separately from one another[6]. As a result, 

optimizing a large model with millions of parameters can be done in smaller, more manageable 

steps that use significantly less resources. 

The number of hidden layers is the primary distinction between shallow and deep networks; 

While shallow neural networks only have one hidden layer, DL architectures have multiple 
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hidden layers. A weighted sum of the units in the layer before it is applied to a nonlinear function 

in an ANN or DNN. There are a variety of nonlinear functions that can be utilized; However, the 

rectified linear unit (ReLU), which is simply f(z) = max(z.0), and the sigmoid function, softmax 

function, hyperbolic tangent function, are the most prevalent. ReLUs were first proposed in the 

1970s[7], but they weren't widely used until 2009[8]. The various deep learning (DL) techniques 

utilized in cyber security are discussed in this section. For each technique, significant papers on 

methodology are cited. 

 

Figure 2. Deep Neural Network. 

Profound Conviction Organizations 

An original paper by Hinton[9] presented Profound Conviction Organizations (DBNs). They 

belong to a class of DNNs that are made up of multiple layers of hidden units that connect the 

layers but not the units in each layer. Unsupervised training is used to train DBNs. They are 

typically trained by individually adjusting weights in each hidden layer to reconstruct the inputs. 

Deep Auto Encoders 

A type of unsupervised neural network, the deep auto encoder takes a vector as its input and tries 

to match its output to that vector. One can create a data representation with either a higher or 

lower dimensionality by taking the input, altering the dimensionality, and then reconstructing the 

input. These kinds of brain networks are amazingly flexible in light of the fact that they learn 

packed information encoding in a solo way. They can also be trained one layer at a time, which 

reduces the amount of computing power needed to create an efficient model. The network is 

utilized for data encoding (also known as feature compression) when the hidden layers have a 

dimensionality that is lower than that of the input and output layers (as shown in Figure 3). By 

training an auto encoder to reconstruct the input from a noisy version of the input (Figure 4), a 

denoising auto encoder, an auto encoder can be designed to remove noise and be more robust[9]. 
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It has been demonstrated that this method is more robust and generalizable than standard auto 

encoders. 

 

Figure 3. Deep Autoencoder. 

 

Figure 4. Denoising Auto Encoder. 

Figure 5 depicts stacked auto encoders, which compress information by employing multiple 

layers of sequentially trained auto encoders[10]. The finished stacked auto encoder with a 

classification layer is shown in Figure 5a. It is made by making an auto encoder, as shown in 

Figure 5b. After that, the inputs from Figure 5b are used to construct the auto encoder shown in 

Figure 5c. A classification layer is added to these after they have been trained together. 

Denoisingauto encoders can also be stacked, just like regular auto encoders[9]. 
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Figure 5. Stacked Auto Encoder With A Classification Layer. (a) Stacked Autoenoder; (b) Auto 

Encoder For Layer 2; (c) Auto Encoder For Layer 3. 

A type of encoder called a sparse auto encoder has more hidden nodes than input and output 

layers, but only a portion of the hidden units are activated at once[11]. This is represented by 

punishing enacting extra hubs. 

Restricted Boltzmann Machines  

The fundamental components of DBNs are restricted Boltzmann machines (RBMs), which are 

two-layer, bipartite, undirected graphical models in which data can flow in both directions rather 

than just one[11]. RBMs, like auto encoders, can be trained one layer at a time and are 

unsupervised. The input layer occupies the first layer. The hidden layer is located in the second 

layer (Figure 6). There are no intra-layer associations (i.e., between hubs in a similar layer); 

However, full connectivity means that every node in the hidden layer is connected to every node 

in the input layer. 
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Figure 6. Restricted Boltzmann Machine. 

In most cases, the input and hidden layers only use binary units for their units. Using a lot of 

math from statistical mechanics, the network is trained to minimize the "energy" function, which 

measures the compatibility of the model. The model is being trained to find the functions and, 

consequently, the hidden state that reduce the system's energy. Additionally, RBMs are 

probabilistic, which means that they assign probabilities rather than specific values. 

Notwithstanding, the result can be utilized as highlights for another model. By feeding binary 

input data forward through the model, the model is trained. After that, the model processes it in 

reverse to reassemble the input data. The weights are then updated by calculating the system's 

energy. Until the model converges, this procedure is repeated. Likewise, to auto encoders, RBMs 

can be stacked to frame various layers to make a more profound brain organization. Stackable 

RBMs are the name given to these. 

Metrics 

The authors of the papers cited in the following sections used a variety of classification metrics, 

which are described in this section. A model performing a binary classification task can be 

measured using a variety of metrics. These measurements incorporate exactness, accuracy, 

review, misleading positive rate, F1 Score, and region under the bend (AUC) and large numbers 

of the measurements have more than one name. These assessment measurements are gotten from 

the four qualities tracked down in the disarray grid (Table 1), which depends on the determined 

anticipated class versus the ground truth. 
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Accuracy (acc) or Proportion Correct: the ratio of correctly classified examples to all items. The 

usefulness of accuracy is lower when the classes are unbalanced (i.e., there are a significantly 

larger number of examples from one class than from another). However, it does provide useful 

insight when the classes are balanced. 

 
 

Positive Predictive Value (PPV) or Precision (p): The ratio of items correctly classified as class 

X to all items that were classified as class X. 

True positive rate and precision are given equal weight in this particular version of the F- 

function.The AUC (area under the curve): The sum of the area under a receiver operating 

characteristic (ROC) curve, which is a plot of the false positive rate in comparison to the true 

positive rate that is produced by varying the classification thresholds. 

Calculating accuracy for problems with multiple classes is simple; However, metrics like 

precision, recall, FPR, F1 Score, and AUC cannot be easily calculated (TP and TN do not exist 

for three-class problems, for example). Recall, precision, etc. can be determined for a problem 

with more than three classes by turning it into a two-class problem (i.e., all versus one), where 

the metrics for each class are calculated. For multiclass problems, accuracy is usually the only 

thing used. 

It is essential to keep in mind that it is not possible to compare the developed models based on 

the accuracy or any other metrics they obtained because each of the subsequent papers uses a 

different dataset (or sometimes a different subset of a given dataset). If the authors of both 

publications used the same training dataset and testing dataset, then this comparison would be 

valid. 

Cyber Security Datasets For Deep Learning 

The Knowledge Discovery and Dissemination (KDD) 1999 dataset is one of the most widely 

used datasets for intrusion detection[12]. More than 4 million records of network traffic were 

compiled into this dataset for the 1999 KDD Cup competition. However, there is no raw traffic 



 

97 
www.njesr.com 

 

data in the dataset. Instead, 41 features based on basic type, content type, and traffic type have 

been pre-processed into the raw pcap data. There are 22 distinct types of attacks in the dataset, 

which are divided into four families: probing, unauthorized access to local super-user privileges 

(U2R), unauthorized access from a remote machine (R2L), and denial of service (DoS). 

However, a review conducted by[13] revealed a number of issues with the dataset. The synthetic 

nature of the network and attack data, dropped data due to overflow, and ambiguous attack 

definitions were all major contributors to this. Additionally, the dataset was biased by a large 

number of redundant records. A new dataset known as NSL-KDD, which is another dataset that 

is frequently utilized for network intrusion detection, was proposed by[14] as a result of these 

flaws. 

Raw packet data can be found in a few datasets; The CTU-13 dataset, on the other hand, is used 

the most frequently[15]. Raw pcap files for background, normal, and malicious data are included 

in this dataset. When compared to the KDD 1999 and NSL-KDD datasets, the advantage of raw 

pcap files is that individuals can perform their own pre-processing, allowing a wider range of 

algorithms to be utilized. Additionally, there is no simulated dataset in the CTU-13 dataset. 

There is ground truth, the unknown traffic originates from a large network, and the botnet attacks 

are real. It is a diverse dataset because it combines seven distinct botnet families and 13 distinct 

scenarios with varying numbers of computers. 

For the purpose of detecting the domain generation algorithm (DGA), there are three significant 

sources of data. Although a variety of feature extraction methods have been described in 

previous ML papers, the DL algorithms almost entirely rely on domain names. This is reflected 

in that the three essential wellsprings of information for DGA identification are simply space 

names. Since the Alexa Top Sites[10] dataset contains as many as one million domain names, it is 

typically used as a source of benign domain names. OSINT[16] and DGArchive[12] provide the 

malicious domain names. The OSINT DGA feed from Bambenek Counseling was generally 

utilized in light of the fact that it contains DGA spaces from 50 distinct DGAs and incorporates 

in excess of 800 thousand pernicious area names. Alternately, more than 30 reverse-engineered 

DGAs can be accessed through DG Archive, which can be utilized to generate malicious domain 

names on an internal network. 

Datasets with malware are much more prevalent. The most popular apps in the Google Play 

Store are the most common source of normal data in malware experiments. Despite not being 
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guaranteed to be malware-free, these apps are the most likely to be malware-free due to Google's 

vetting and their widespread availability. Additionally, the Virus Total service may be utilized to 

screen them at times. Malware can be found in a number of datasets, including Microsoft, 

Contagio, Comodo, the Genome Project, Virus Share, Virus Total, and DREBIN. Because that is 

where they obtained normal data, the datasets that contain malicious data and the data from the 

Google Play Store share some similarities. 

Malware datasets are typically saved as raw program files. When it comes to feature extraction 

and processing, this makes for a tremendous amount of adaptability. There are 2123 applications 

in the Genome Project dataset, 1260 of which are malicious and belong to 49 distinct malware 

families. Similar to the Virus Share and Virus Total datasets, which provide an ever-changing list 

of new malware types, this is a continuously updated repository of malware files. Another large 

dataset with 22,500 malicious and 22,500 benign raw files is the Comodo dataset. With 250 

malicious files, the Contagio dataset is significantly smaller than the others. There are 120,000 

Android applications in the DREBIN dataset, 5000 of which are malicious, which is a highly 

imbalanced dataset. These crude information records can be handled in various ways including 

as paired documents, as Programming interface calls extricated utilizing a device like Cuckoo 

sandbox, or different strategies. The Microsoft dataset is the only significant dataset that did not 

provide raw files. The Microsoft dataset, which was created for a kaggle competition, consists of 

10,868 hexadecimal and assembly-representative labeled malware binary files belonging to nine 

distinct malware families: Obfuscator, RAmnit, Lollipop, Kelihos_ver3, Vundo, Simda, and 

Kelihos_ver1. Gatak and ACY 

In the DL literature, numerous malware datasets are based on publicly accessible malware 

databases. Contagio, Comodo, the Genome Project, Virus Share, or DREBIN, and the Google 

Play Store as a source of benignware were the most prevalent of these. Others drew on internal 

resources that were kept secret from the general public. Then, features were mostly extracted 

through dynamic or static analysis. Binary versions of the software were the source of other 

features. 

Additionally, the Computer Emergency Readiness Team (CERT) Insider Threat Dataset v6.2 

was a substantial synthetic dataset for insider threat detection. Over 130 million events from 516 

days of system logs are included in this dataset, 400 of which are malicious. Email datasets are 

challenging to get in light of the fact that they are especially difficult to access because of 
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security concerns. However, EnronSpam, SpamAssassin, and LingSpam are some common 

email corpora. Other studies on cyber security that used DL were frequently novel and did not 

use standard datasets; they weren't made public because they were made internally. These studies 

were frequently the only ones conducted in those subject areas and relatively recent. 

Cyber Applications Of Deep Learning Methods 

Malware  

It is becoming increasingly difficult to defend against malware attacks using standard strategies 

because of their increasing frequency and variety. The development of generalizable models for 

the autonomous detection and classification of malware is made possible by DL. This can protect 

organizations or individuals from small-scale attackers who use known malware or large-scale 

attackers who use novel malware.  

Detected  

Malware can be detected in a variety of ways. The second study improved on the first by 

developing DL-based detectors of malicious Android applications using features from static and 

dynamic analyses. Three specific sources were used to specifically select the features: static 

examination of dynamic behaviours as well as sensitive application program interfaces (APIs) 

and required permissions. By parsing AndroidManifest.xml and classes.dex, the static-based 

features are derived from the installation.apk file. This details the APIs used and the required 

permissions. By collecting data from DroidBox, an Android application sandbox, the dynamic 

behaviour features are derived from dynamic analysis. A DBN with two hidden layers that took 

these features as input had an accuracy of 96.76 percent, a TPR of 97.84 percent, and a FPR of 

4.32 percent. Numerous designs were tried and a two-stowed away layer DBN was viewed as the 

best. They tested random forests, logistic regression, naive Bayes, and support vector machines 

(SVMs), and their results were superior to these. 

When compared to static features, which are simple to obfuscate, dynamic features tend to be 

more reliable. Since the software is run in a sandbox, features like API calls are frequently 

utilized. Pascanu et al. is one example of this[18], who created a classification method for 

malware detection that incorporates logistic regression, multilayer perceptron (MLP), and RNNs. 

To predict the next API call, the RNN is trained unsupervised. After max-pooling the feature 

vector to prevent it from potentially reordering temporal events, the output of the hidden layer of 

this RNN is fed into the classifier. The hidden state from the middle of the sequence and the final 
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hidden state are utilized to guarantee that the features contain temporal patterns. The FPR was 

1%, and the TPR was 71.71 percent. 

Kolosnjaji and co.[13] discovered malware by employing CNNs and RNNs. One-hot encoding is 

used to turn the list of API kernel call sequences into binary vectors. A method for storing 

categorical data in a format that is easier for machine learning is one-hot encoding. The DL 

algorithm, which consists of a CNN and a RNN (with an LSTM and a softmax layer), is trained 

with this data. This model accomplishes an exactness of 89.4%, accuracy of 85.6%, and review 

of 89.4%. 

Tobiyama and other built a malware detector that used an RNN to extract features from API calls 

time series data. An image containing these features is then processed using a CNN to determine 

whether it is malicious or normal. The CNN has two convolutional layers and two pooling 

layers, and the RNN makes use of an LSTM. Two completely connected layers come next. They 

were able to achieve an AUC of 0.96 despite the small dataset they used.By preprocessing the 

Windows Portable Executable (PE) files, Ding, Chen, and Xu extracted the n-grams and created 

a DBN with the operational codes (opcodes in machine language). There were three hidden 

layers in the DBN. There were 10,000 unlabelled files and 3,000 malicious files in the dataset. 

When pre-trained with unlabelled data, the DBN model performs better than SVMs, decision 

trees, and k-nearest neighbours clustering. The best DBN had an accuracy rate of 96.7%. 

McLaughlin and others additionally, a feature-free, engineering-free detector was developed 

using the opcodes found in malware files. McLaughlin and others[8] processed the raw opcode 

data with an embedding layer before feeding it into a CNN with two convolution layers, one max 

pooling layer, a fully connected layer, and a classification layer. They achieved recall of 95 

percent and 85 percent, an F1 Score of 97 percent and 78 percent, and accuracy of 98 percent and 

80 percent on various datasets. Similar to the decline in non-DL methods, the significant 

difference between the first and second datasets is probably due to a significant increase in the 

variety of malware in the second dataset. 

Hardy and co. also built a DL malware detector with API calls. For this job, they used 

autoencoders and a sigmoid classification layer, and they got 95.64 percent right. Xu et al., 

Benchea and Gavriluţ, Hou and co., Zhu and co., furthermore, Ye et al. utilized RBMs The 

datasets and approaches used varied in determining success with these. Hardy and others, Hou 

and co., and Ye as well all made use of the Comodo Cloud Security Center dataset, which had an 
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accuracy of 96.6% or a TPR of 97.9%. Using a custom dataset, Benchea and Gavriluţ achieved a 

true positive rate of 90.1% and an accuracy of 99.72 percent. Xu and co. on a Google Play Store 

and VirusSharedataset, achieved an accuracy of 93.4 percent. Zhu and co. used a dataset that 

included data from the Google Play Store, Genome, DREBIN, and VirusTotal, and they got an 

F1 Score of 95.05 percent. The raw software binaries, on the other hand, can be utilized as 

features. The software binaries were transformed into two-dimensional entropy histograms by 

Saxe and Berlin[11]; a feature vector based on the import address table of the input binary file; 

and numerical fields taken from the portable executable packaging of the binary. This was 

accomplished without having to manually sort, unpack, or filter the software. A standard DNN 

for classification was then trained using these features. Using dropout layers and parametric 

rectified linear or sigmoid activation functions, these features are used to train a four-layer neural 

network, which includes an input layer, two hidden layers, and an output layer. Saxe and Berlin 

[9] followed this with a Bayesian alignment model to give a likelihood that a given record is 

malware. Because the classifier cannot be assumed to have a standard distribution, this is based 

on a prior of the ratio of malware to benignware and the DNN's error rate, using an 

Epanechnikov kernel for kernel density estimation. They assert that they have reached a level of 

success that could be used in real life: a 95% identification rate and a 0.1% FPR. 

To distinguish refined malware, network conduct based techniques are required as they key on 

the coordinated order and control (C2) traffic from the malware. Due to the demands on 

resources, it is impossible for humans to thoroughly examine all new malware samples for an 

extended period of time. Shibahara et al.[9] proposed a technique for deciding if network-based 

unique examination ought to be applied to organize information, and when it ought to be 

suspended, in view of organization conduct, explicitly when the malware stops C2 action. Their 

approach's central concept was centred on two features of malware communication: the alteration 

in the common latent function (i.e., the outcomes that were unplanned or unexpected) and the 

communication purpose. Malware communications share these characteristics with natural 

language. In order to achieve high classification performance, they used the recursive tensor 

neural network (RSTNN), which improved the performance of recursive neural networks 

(RSNN) by using a tensor to calculate high-order composition of input features. Their proposed 

method reduced analysis time by 67.1% when tested on 29,562 malware samples, with a 

precision of 97.6%, recall of 96.2%, and F1 Score of 96.9%. 
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Malware frequently needs to communicate with C2 servers located on external networks. 

Mizuno et al. used network traffic's HTTP headers to[9] identified malicious software-generated 

traffic with a 97.1% accuracy and a 1.0% FPR. A DNN with two hidden layers was used to 

achieve this.Among the many significant advantages of mobile edge computing (MEC), location 

awareness services and cloud computing capabilities are two examples. However, due to the 

mobile device's vulnerability when connecting to an edge computing device, this new computing 

paradigm raises potential security concerns. Chen, Zhang, and Maharjan[3] trained a DBN with 

an unsupervised hidden layer of RBMs, followed by a classification layer, using a dataset 

consisting of 500 malicious and 5000 benign applications from an MEC environment. 

Depending on the proportion of normal to malicious data, this method outperforms softmax, 

decision trees, SVMs, and random forests with accuracies of between 91 and 96 percent. 

However, without additional metrics like true positive and false negative rates, it is difficult to 

interpret these numbers.Ransomware, also known as cryptovirology, is a growing problem due to 

the large number of variations and relative ease with which new variations can be created 

through minor augmentations. Hill and Bellekens[4] classified cryptographic primitives in 

compiled, binary executables with the help of dynamic convolutional neural networks (DCNNs) 

in order to combat these cryptovirological augmentations. A DCNN is like a regular CNN; 

However, instead of utilizing a maximum pooling layer with a particular dimension, it makes use 

of k-max pooling, where k scales with input length to accommodate inputs of various lengths. 

An accuracy of 91.3 percent was achieved by employing a DCNN with an embedding layer, 11 

convolutions, and k-max pooling layers. 

Dahl and co.[15] produced DNNs used for classifying malware by combining feature selection and 

random projections[17] to reduce the dataset's dimensionality. Using a modified version of 

Microsoft's production anti-malware engine, the initial dataset was created; the same engine that 

powers Microsoft Security Essentials [18] to extract features like tri-grams of API calls, distinct 

combinations of a single system API call and one input parameter, and null terminating patterns. 

50 million features were produced by combining all feature collection parameter combinations. 

Using feature selection, this was reduced to 179,000. The feature space was then reduced to a 

few thousand using the sparse random projections method. The utilization of RBMs for the 

hidden layers was one of the various DNN architectures that were tested. The one-hidden-layer 

DNN architecture without RBMs performed the best, with a test error on malware type of 9.53 
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percent and a FPR of 0.35 percent and a test error on two classes of 0.49 percent and a FPR of 

0.83 percent, respectively. In any case, the two-layer without RBMs didn't perform genuinely 

more terrible. Cordonsky et al.[9] used a DNN with nine layers, batch normalization, and dropout 

between layers to perform a similar test of malware classification. They were able to classify 

malware families with 97% accuracy using features derived from static and dynamic analysis. 

Cordonsky and others Additionally, it was discovered that the output of the DNN prior to the 

decision layer can be used to distinguish between novel and known family types in a two-

dimensional visualization. 

CNNs, on the other hand, can be used to classify malware. Classifying the binary files using a 

2D CNN and transforming them into a 2D grayscale image is one option[10]. Treating the 

operation code as words and applying a 1D CNN with an embedding layer for classification is 

another strategy. The CNN without a pre-trained embedding layer had the highest accuracy of 

any CNN-based model, achieving 99.52 percent. 

David and Netanyahu's[11] novel approach to malware classification made use of denoising auto 

encoders and DBNs trained on unlabeled data to generate malware signatures. The marks of the 

product were worked by taking the logs from a sandbox, and handling them utilizing n-grams by 

taking the most widely recognized 20,000 unigrams that show up just in the malware, and 

making a 20,000-highlight vector that distinguishes whether a given unigram showed up. This 

information was then used to pre-train an eight-layer DBN with denoising auto encoders. 30 

numbers made up the final malware signature vector. The organization was prepared on the 1800 

malware models, acquired from C4 Security, with six distinct kinds of malware, 300 models for 

each sort. An SVM was used to build the malware classifier after the features were computed, 

and 1200 malware examples were used for training. The results were promising, with an 

accuracy rate of 98.6%.By using an RNN autoencoder to convert the API call sequences into a 

low-dimensional feature vector, followed by a classification layer to identify the type of malware 

family, Wang and Yiu [12] improved upon the work of David and Netanyahu[11]. Wang and 

Yiu's[12] classification accuracy was 99.1% thanks to a bidirectional recurrent neural network 

autoencoder layer. In addition, they instructed a second classifier to correctly classify zero-day 

attacks by interpreting file access patterns. A 99.2% accuracy recurrent neural network 

autoencoder was the best model. In a similar vein, Yousefi-Azar et al.[13] tested various 

classification layers and constructed an autoencoder-based classifier with API calls. With an 



 

104 
www.njesr.com 

 

accuracy of 96.3%, they discovered that an SVM classifier was the best. However, the accuracy 

of a unigram classifier using Xgboost was 98.2%. 

For their features, Huang and Stokes[11] only used software dynamic analysis. The API and 

parameter stream, in addition to the raw executable file, provided the basis for the features. They 

were able to solve the binary malware detection problem with an error rate of 0.36 percent and 

the malware classification problem with an error rate of 2.94 percent using a DNN. 

Grosse and others[15] further tested their DL model on adversarial samples generated using a 

method developed by Papernot et al. to classify malicious Android applications.[16] (a distinction 

from GANs). The reason for the work by Grosse et al. was to examine the DNN's 

generalizability. They utilized the application's static analysis-derived features from the 120,000 

Android applications in the DREBIN dataset[16]. For classification, the DNN had two hidden 

layers and a softmax layer. Their initial DNN classifier had an accuracy of 95.93 percent to 

98.35%, with FNR and FPR of 9.73 percent and 1.29 percent, respectively, depending on the 

training set's malware-to-beneficial ratio. Be that as it may, on the test dataset made out of ill-

disposed models, the misclassification rate was somewhere in the range of 63.08% and 69.35%, 

contingent upon the proportion of malware to benignware in the preparation dataset. After that, 

they retrained the models using a variety of adversarial samples, and they found that the 

misclassification rate went down, but only slightly. 

Conclusions 

Cyber defenders' ability to write and deploy new signatures to detect these new attacks is 

outpaced by the rate at which attacks against cyber networks continue to advance. Cyber security 

applications can use neural network-based DL approaches to detect new malware variants and 

zero-day attacks thanks to advancements in ML algorithm development and this. In this survey 

paper, we discussed how DL techniques could be applied to a wide range of cyber security 

attacks that targeted host systems, application software, networks, and data. Additionally, we 

provided a comprehensive analysis of the known applications of DL techniques for detecting 

these cyberattacks. We talked about the DL architecture and the training process for a wide range 

of new and established approaches, from RNNs to GANs. The various types of attacks were 

treated separately in the current methods. The cascading connection of malicious activities 

throughout an attack lifecycle (such as breach, exploitation, command and control, data theft, 

etc.) should be taken into consideration in future research. We also talk about the various metrics 
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that are used to measure how well DL performs in cyber security applications. Be that as it may, 

the utilization of various datasets for preparing and testing didn't take into account fair 

correlation across the various methodologies as a whole. As a result, benchmark datasets are 

absolutely necessary to advance DL in the field of cyber security. We identified the need for 

approaches to be developed that take the adversary into consideration as to how they may use DL 

as a tool to subvert DL detection mechanisms and identified future research opportunities related 

to the development of new datasets to motivate work in developing new DL approaches for 

cyber security. As a result, the goal of this survey is to compile a useful body of research to 

inspire researchers to improve DL for cyber security systems. 
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