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Abstract 

 Purpose of this paper is to study the hydromagnetic flow of  

Rivlin-Ericksenfluid through porous medium between two inclined parallel 

plates. In this paper, we have considered the flow of two immiscible 

conducting visco-elastic fluids between two parallel plates in presence of 

transverse uniform magnetic field. The pressure gradient of the flow are either 

transient or periodic in nature. 

Introduction 

 The aim of present investigation is to study the hydromagnetic flow of 

Rivilin-Ericksen fluid through a porous medium between two inclined parallel 

plates. The stability of a horizontal layer of viscoelastic fluid heated from 

below has been investigated by Vest and Arpaci [1]. Rechardson and Taylor [3] 

investigated the oscillatory flow of fluid through a long circular tube under the 

influence of periodic pressure gradient. Bhatia and Steiner [11] have  
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considered the effect of a uniform rotation on the thermal instability of a 

Maxwell fluid and have found that rotation has a destabilizing effect in contrast 

to the stabilizing effect on Newtonian fluid. The flow of a viscous 

incompressible fluid past a Semi-infinite plate started impulsively from rest, by 

analytical method where as it was studied by finite difference method by Hall 

[8] and by integral method by Tani and Yu [5]. Bhatia and Steiner [12] have 

also studied the problem of thermal instability of a viscoelastic fluid in 

hydromagnetics and have found that the magnetic field has the stabilizing 

influence on Maxwell fluid just as in the case of Newtonian fluid. The thermal 

instability of a viscoelastic (oldoydian) fluid has been considered in the 

presence of magnetic field by Sharma [14] and in the presence of suspended 

particles by Sharma and Sharma [15]. 

 Here an attempt is made to solve the problem given by Das [2] for two 

immiscible conducting viscoelastic fluid between parallel plates. 

 In this chapter, we have considered the flow of two immiscible 

conducting visco-elastic fluids between two parallel plates in presence of 

transverse uniform magnetic field. The pressure gradient of the flow are either 

transient or periodic in nature. 

Formulation of The Problem 

 Here we have assumed the following notations : 

 t = Time variable 

 B0 = Magnetic induction 

 u = Velocity of flow 

 λ = Kinematic coefficient of visco-elasticity 
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 In the present analysis, we have assumed that unlimited mass of 

conducting visco-elastic fluid is separated by two parallel plates of depth 2a. 

Purterbation of the field has been ignored. In this chapter, the fluid was initially 

at rest and both the fluids separated by the plates were set in motion under the 

action of time varying pressure gradient. Origin lies on lower plates which is 

fixed. 

 The flow of fluids is along x-axis and perpendicular to y-axis. 

 In this regard, the equation of motion can be written in the form : 
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 (Wherein λ is kinematic coefficient of visco-elasticity) 

 Equation of continuity is given by  

(2.2) 0
x

u =
∂
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Solution of The Problem 

 We have considered following two cases : 

Case I : In the first case, we have considered that upper plate moves with 

transient velocity ω' e–t and the transient pressure gradient π e–t is applied to the 

two fluids. 

(3.1) i.e. u = ω' e–t 

  and 

(3.2)  te
x

p −π=
∂
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 From equation (3.1), (3.2) and (2.1), we obtain  
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 equation (3.3) can be written as  
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 The boundary conditions are as follows : 

(3.7)  ω1 = 0  when  y = -a 

  ω2 = u1 when  y = 0  t > 0 

(3.8)  ω1 = u1 when  y = 0 

  ω2 = u2 when  y = a  t > 0 

 In this regard, we shall consider following two conditions : 

Condition (A)  

 Let us consider that the first fluid moves under the boundary 

conditions (3.7), then the solution of the equation (3.4) becomes 
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 Subsituting equation (3.9) into equation (3.1), we obtain 

(3.10)  u = [(u1 + v') coshAy + {(u1 + v') cot hAa – v' cosec hAa}  
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       sinhAy -v'] e–t 

       Wherein 
2

2
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Remark 3.1  

 It is to be noted that if we take A is very small, then  

 coshAy≅  1  and  sin hAy≅ Ay 

 then the relation (3.10) reduces in the form  
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 This shows that the velocity is transient in character and 

approaches to zero after a long time from the start of the motion. 

Condition (B)  

 Let us consider that second fluid moves under the boundary 

conditions (3.8), the solution of equation (3.4) becomes – 

(3.12)  +
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(3.13) u = [(u1 + v') coshAy + {u2 + v') cosec hAa – (u1 + v') cot hAa] 

        sinhAy – v'] e–t 

       wherein
2

2

A

B
'v =  

 If a is much smaller, then we take 

(3.14)  coshAy≅  1  and  sin hAy≅ Ay  
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  The equation (3.13) reduces in the form 
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Case II :In this case, we have assumed that upper plate is moving parallel 

to itself with periodic velocity ω' eit and periodic pressure gradient πeit is 

applied to the two fluids. 

(3.16)  i.e. u = ω'  eit 

   and 
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 By virtue of equation (3.16) and equation (3.17) and (2.1), we get - 
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 If we choose 
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  then the equation (3.18) reduces in the form 
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 The boundary conditions are as follows : 

(3.22)  ω1 = 0  when  y = -a 

  ω2 = C0 when  y = 0  t > 0 
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(3.23)  ω1 = C0 when  y = 0 

  ω2 = C1 when  y = a  t > 0 

 Now again following two conditions may by arise : 

Condition [A]  

 Let us consider that the first fluid moves under the boundary 

condition (3.22), the solution of equation (3.21) takes the form 

(3.24)  ω' = (V0 + µ') coshcy + {(V0 + µ') cot hCa – µ' cosec hCa] 

       sinhCy – µ' 

      wherein
2

2

C

D
'=µ  

 Inserting the equation (3.24) into the equation (3.16) and (3.17), we 

obtain  

(3.25)  u = [(v0 + µ') coshCy + {(v0 + µ') cot hCa - µ' cosec Ca] 

       sinhCy - µ'] eit 

 If we take C is much smaller, then 

(3.26)  coshCy≅  1  and  sin hCy≅ Cy 

 In this regard, relation (3.25) takes the form 
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 Above expression indicates that the velocity u is a periodic 

function of time which depends on the depth of the fluids. 

Condition [B]  
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 In this case, we have considered the second fluid moves under the 

boundary condition (3.23), then the solution of equation (3.21) takes the 

form 

(3.28) ω' = (v0 + µ') coshCy + {(v1 + µ') cosec hCa – (v0 + µ') cot hCa} 

       Sin hCy – µ' 

      Wherein 
2

2

C

D
'=µ  

  using (3.27) into the relation (3.16) and (3.17), we get 

(3.29) u = (v0 + µ') coshCy + {(v1 + µ') cosec hCa – (v0 + µ') cot hCa} 

        Sin hCy – µ'] eit 

  using statement giving in equation (3.26), then the above 

equation becomes 

(3.30)  ( ) ( )itexp
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y
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 Which shows that u is a periodic function of t and also depends on 

the depth of the fluids. 

Remark 3.2  

 If a → ∞, then relation (3.30) reduces in the form 

  u = V0exp (it) 

 

***** 
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